Эхо Чернобыля: как смертельно опасный америций угрожает здоровью и жизни беларусов? Цезий Радиус ядра атома цезия 137

В этом году завершается период полуочищения от цезия-137 Но это произойдет только в дальних зонах радиационного загрязнения

Период полураспада цезия-137 составляет 30 лет, для стронция-90 период полуочищения составляет 7-12 лет. По прогнозу Госкомчернобыля , через три года на самых загрязненных территориях в земле останется 60-70% цезия-137, 90-95% плутония-239. А устойчивее других «окопался» в белорусской земле плутоний-240, период полураспада которого завершится через 6537 лет.

ПЕРИОД ПОЛУРАСПАДА СЕКРЕТОВ

Спецслужбы Украины рассекретили “Чернобыльский архив КГБ”

Белорусские чекисты раскрывать секреты не спешат На сайте Службы безопасности Украины www.sbu.gov.ua в свободном доступе размещен 121 документ архива КГБ Украинской ССР. “Комсомолка” прочитала рассекреченные документы, и непонятного вокруг катастрофы на ЧАЭС стало еще больше. Оказывается, КГБ все держал под контролем. Спецслужбам было известно, что при строительстве ЧАЭС используется бракованное югославское оборудование (и такой же брак поставлялся на Смоленскую АЭС). За несколько лет до катастрофы в докладных записках КГБ указывал на ошибки в проектировании станции, обнаружены трещины, расслоение фундамента… Последнее “внутреннее” предупреждение о возможной аварийной ситуации датировано 4 февраля 1986 года. До катастрофы оставалось три месяца… Только спецслужбы были в курсе, что после катастрофы в зоне повышенной радиоактивной зараженности будет заготовлено около 3,2 тысячи тонн мяса и 15 тонн масла. “…Мясо подлежит переработке на консервы с добавлением чистого мяса. …Масло реализовать после длительного хранения и повторного радиометрического контроля через сеть общественного питания”.

Не собирается ли белорусский КГБ рассекретить свои чернобыльские архивы? С таким вопросом “Комсомолка” обратилась к руководителю пресс-службы КГБ Беларуси Александру Базанову : “Мы не обслуживали объект Чернобыльская атомная электростанция. Поэтому нам рассекречивать нечего. Вопросами радиационной защиты населения занимается МЧС . Мы располагаем обычной оперативной информацией по регионам Гомельской области, в том числе на момент аварии. Возможно, в этих документах и затрагиваются какие-то вопросы, связанные с отслеживанием поставарийной ситуации. Но срок хранения в архивах КГБ данной информации превышает 10 лет. Мы пока не планируем рассекречивать данные документы”.

ПЕРИОД ПОЛУРАСПАДА БЮДЖЕТА

За 11 лет чернобыльские расходы государства уменьшились почти в три раза.

За то же время расходы государственного бюджета на правоохранительную деятельность увеличились более чем в два раза.

Собственные расходы Беларусь начала перекраивать с 1992 года. За это время самое существенное «похудание» в финансировании произошло там, где этого меньше всего можно было ожидать. Почти в три раза сократились расходы на финансирование мероприятий по ликвидации последствий аварии на Чернобыльской АЭС (с 12,6% в 1992-м до 4,4% в 2003 году). Щедрее всего государство финансировало правоохранительную деятельность. Расходы увеличились более чем в два раза (с 3% в 1992-м до 7,7% в 2001 году). Возможно, преступность и в самом деле опаснее радиации, но пока белорусское государство принято считать не криминальным, а социальным.

Как менялись расходы государственного бюджета Беларуси в 1992-2003 годах

Расходы %

ПЕРИОД ПОЛУРАСПАДА “ГРЯЗНЫХ” ТЕРРИТОРИЙ

На Гомельщине вернули в севооборот 12 тысяч гектаров прежде “грязной” земли.

А попутно перестали обрабатывать 60 тысяч гектаров чистой, но неплодородной пашни.

Помимо прочих бед в апреле 1986 года Беларусь потеряла еще и 264 тысяч гектаров сельскохозяйственных земель. Правда, это не значит, что все земли загрязненных радионуклидами районов пустовали. Разрабатывались программы для их реабилитации: засевали поля рапсом да зерном на корм скоту и для производства спирта. Нужно чем-то было занимать местное население. По-видимому, с этой же целью начали возвращать в севооборот земли, которые совсем недавно считались загрязненными. В Гомельской области вернули “с того света” в севооборот 12 тысяч гектаров. В Могилевской -- 2,5 гектара земли и, как признались в облисполкоме, могли бы и больше, да некому на земле работать.

Попутно сокращается “перечень населенных пунктов, подвергшихся загрязнению”. В апреле 2002 года “черный список” был сокращен на 146 деревень и городов Беларуси. Проживает там около 100 тысяч человек.

ПЕРИОД ПОЛУРАСПАДА ЛЬГОТ

Льготы «чернобыльцев» не отменяются, они приостанавливаются.

Первые “приостановленные” дотации не действуют уже семь лет.

ЧТО БЫЛО. Закон “О социальной защите граждан, пострадавших от катастрофы на Чернобыльской АЭС” был принят в 1991 году. Тогда этот документ предусматривал огромное количество льгот для пострадавшего населения, ликвидаторов, их семей. Скидки и доплаты государство прописало для чернобыльцев по всем жизненно важным сферам: жилье, образование, лекарства, кредиты на строительство, проезд в общественном транспорте, бесплатные лекарства, льготы при поступлении в вузы, санаторно-курортное лечение, пенсии, дотации и т.д. Только на льготы ликвидаторам отведено 25 пунктов в законе.

ЧТО СТАЛО

Последний раз изменения в “чернобыльский закон” вносились в 2001 году. Некоторые льготы, например, на оплату коммунальных услуг, бесплатные лекарства, проезд в транспорте, выплату пособий, выдачу безвозмездных кредитов на строительство, для многих уже история. К примеру, с 1997 года «чернобыльцы» не получают компенсации за утраченное в связи с переселением имущество и связанные с переездом расходы. С 1995 года ликвидаторы не имеют право получать беспроцентные кредиты, бесплатно ездить в общественном транспорте и не получают 50% скидки на железнодорожные и авиабилеты. Для семей умерших ликвидаторов уже нет скидки на оплату жилой площади. А с 2002 года многие «чернобыльцы» не могут рассчитывать на льготы, прозванные в народе “гробовыми”. Это ежемесячные выплаты тем, кто проживает на загрязненных территориях, повышение зарплаты тем, кто работает в загрязненных зонах. Утешить может разве тот факт, что эти деньги должны идти на закупку оборудования в местные клиники.

Сегодня точно подсчитать количество отмененных чернобыльских льгот невозможно. Потому что ни одна государственная скидка для «чернобыльцев» не отменена, а… приостановлена. Такая формулировка использована в соответствующих декретах и указах.

Раиса МУРАШКИНА, Виктор МАЛИШЕВСКИЙ, Ольга АНЦИПОВИЧ

При делении образуются разнообразные изотопы, можно сказать, половина таблицы Менделеева. Вероятность образования изотопов разная. Какие-то изотопы образуются с большей вероятностью, какие-то с гораздо меньшей (см. рисунок). Практически все они радиоактивные. Однако у большинства из них периоды полураспада очень маленькие (минуты или еще меньше) и они быстро распадаются в стабильные изотопы. Однако, среди них есть изотопы, которые с одной стороны охотно образуются при делении, а с другой имеют периоды полураспада дни и даже годы. Именно они представляют для нас основную опасность. Активность, т.е. количество распадов в единицу времени и соответственно количество "радиоактивных частиц", альфа и/или бета и/или гамма, обратно пропорциональна периоду полураспада. Таким образом, если есть одинаковое количество изотопов, активность изотопа с меньшим периодом полураспада будет выше, чем с большим. Но активность изотопа с меньшим периодом полураспада будет спадать быстрее, чем с большим. Йод-131 образуется при делении с приблизительно такой же "охотой" как и цезий-137. Но у йода-131 период полураспада "всего" 8 суток, а у цезия-137 около 30 лет. В процессе деления урана, по началу количество продуктов его деления, и йода и цезия растет, но вскоре для йода наступает равновесие – сколько его образуется, столько и распадается. С цезием-137, из-за его относительно большого периода полураспада, до этого равновесия далеко. Теперь, если произошел выброс продуктов распада во внешнюю среду, в начальные моменты из этих двух изотопов наибольшую опасность представляет йод-131. Во-первых, из-за особенностей деления его образуется много (см. рис.), во-вторых из-за относительно малого периода полураспада его активность высока. Со временем (через 40 дней) его активность упадет в 32 раза, и скоро практически его видно не будет. А вот цезий-137 поначалу может быть "светить" не так сильно, зато его активность будет спадать гораздо медленнее.
Ниже рассказано о самых "популярных" изотопах, которые представляют опасность при авариях на АЭС.

Радиоактивный йод

Среди 20 радиоизотопов йода, образующихся в реакциях деления урана и плутония, особое место занимают 131-135I (T1/2 = 8.04 сут.; 2.3 ч.; 20.8 ч.; 52.6 мин.; 6.61 ч.), характеризующиеся большим выходом в реакциях деления, высокой миграционной способностью и биологической доступностью.

В обычном режиме эксплуатации АЭС выбросы радионуклидов, в том числе радиоизотопов йода, невелики. В аварийных условиях, как свидетельствуют крупные аварии, радиоактивный йод, как источник внешнего и внутреннего облучения, был основным поражающим фактором в начальный период аварии.


Упрощенная схема распада йода-131. При распаде йода-131 образуются электроны с энергиями до 606 кэВ и гамма-кванты, в основном с энергиями 634 и 364 кэВ.

Основным источником поступления радиойода населению в зонах радионуклидного загрязнения были местные продукты питания растительного и животного происхождения. Человеку радиойод может поступать по цепочкам:

  • растения → человек,
  • растения → животные → человек,
  • вода → гидробионты → человек.

Молоко, свежие молочные продукты и листовые овощи, имеющие поверхностное загрязнение, обычно являются основным источником поступления радиойода населению. Усвоение нуклида растениями из почвы, учитывая малые сроки его жизни, не имеет практического значения.

У коз и овец содержание радиойода в молоке в несколько раз больше, чем у коров. В мясе животных накапливаются сотые доли поступившего радиойода. В значительных количествах радиойод накапливается в яйцах птиц. Коэффициенты накопления (превышение над содержанием в воде) 131I в морских рыбах, водорослях, моллюсках достигает соответственно 10, 200-500, 10-70.

Практический интерес представляют изотопы 131-135I . Их токсичность невелика по сравнению с другими радиоизотопами, особенно альфа-излучающими. Острые радиационные поражения тяжелой, средней и легкой степени у взрослого человека можно ожидать при пероральном поступлении 131I в количестве 55, 18 и 5 МБк/кг массы тела. Токсичность радионуклида при ингаляционном поступлении примерно в два раза выше, что связано с большей площадью контактного бета-облучения.

В патологический процесс вовлекаются все органы и системы, особенно тяжелые повреждения в щитовидной железе, где формируются наиболее высокие дозы. Дозы облучения щитовидной железы у детей вследствие малой ее массы при поступлении одинаковых количеств радиойода значительно больше, чем у взрослых (масса железы у детей в зависимости от возраста равна 1:5-7 г., у взрослых – 20 г.).

В исходной статье И.Я. Василенко, О.И. Василенко. Радиоактивный йод про радиоактивный йод содержатся гораздо подробные сведения, которые, в частности, могут быть полезны медицинским работникам.

Радиоактивный цезий

Радиоактивный цезий является одним из основных дозообразующих радионуклидов продуктов деления урана и плутония. Нуклид характеризуется высокой миграционной способностью во внешней среде, включаяпищевые цепочки. Основным источником поступления радиоцезия человеку являются продукты питания животного и растительного происхождения. Радиоактивный цезий, поступающий животным с загрязненным кормом, в основном накапливается в мышечной ткани (до 80 %) и в скелете (10 %).

После распада радиоактивных изотопов йода основным источником внешнего и внутреннего облучения является радиоактивный цезий.

У коз и овец содержание радиоактивного цезия в молоке в несколько раз больше, чем у коров. В значительных количествах он накапливается в яйцах птиц. Коэффициенты накопления (превышение над содержанием в воде) 137Cs в мышцах рыб достигает 1000 и более, у моллюсков – 100-700,
ракообразных – 50-1200, водных растений – 100-10000.

Поступление цезия человеку зависит от характера питания. Так после аварии на ЧАЭС в 1990 гю вклад различных продуктов в среднесуточное поступление радиоцезия в наиболее загрязненных областях Беларуси был следующим: молоко – 19 %, мясо – 9 %, рыба – 0.5 %, картофель – 46 %, овощи – 7.5 %, фрукты и ягоды – 5 %, хлеб и хлебопродукты – 13 %. Регистрируют повышенное содержание радиоцезия у жителей, потребляющих в больших количествах "дары природы" (грибы, лесные ягоды и особенно дичь).

Радиоцезий, поступая в организм, относительно равномерно распределяется, что приводит к практически равномерному облучению органов и тканей. Этому способствует высокая проникающая способность гамма-квантов его дочернего нуклида 137mBa, равная примерно 12 см.

В исходной статье И.Я. Василенко, О.И. Василенко. Радиоактивный цезий про радиоактивный цезий содержатся гораздо подробные сведения, которые, в частности, могут быть полезны медицинским работникам.

Радиоактивный стронций

После радиоактивных изотопов йода и цезия следующим по значимости элементом, радиоактивные изотопы которого вносят наибольший вклад в загрязнение – стронций. Впрочем, доля стронция в облучении значительно меньше.

Природный стронций относится к микроэлементам и состоит из смеси четырех стабильных изотопов 84Sr (0.56 %), 86Sr (9.96 %), 87Sr (7.02 %), 88Sr (82.0 %). По физико-химическим свойствам он является аналогом кальция. Стронций содержится во всех растительных и животных организмах. В организме взрослого человека содержится около 0.3 г стронция. Почти весь он находится в скелете.

В условиях нормальной эксплуатации АЭС выбросы радионуклидов незначительны. В основном они обусловлены газообразными радионуклидами (радиоактивными благородными газами, 14С, тритием и йодом). В условиях аварий, особенно крупных, выбросы радионуклидов, в том числе радиоизотопов стронция, могут быть значительными.

В начальный период 89Sr является одним из компонентов загрязнения внешней среды в зонах ближних выпадений радионуклидов. Однако у 89Sr относительно небольшой период полураспада и со временем начинает превалировать 90Sr.

Животным радиоактивный стронций в основном поступает с кормом и в меньшей степени с водой (около 2 %). Помимо скелета наибольшая концентрация стронция отмечена в печени и почках, минимальная – в мышцах и особенно в жире, где концентрация в 4–6 раз меньшая, чем в других мягких тканях.

Радиоактивный стронций относится к остеотропным биологически опасным радионуклидам. Как чистый бета-излучатель основную опасность он представляет при поступлении в организм. Населению нуклид в основном поступает с загрязненными продуктами. Ингаляционный путь имеет меньшее значение. Радиостронций избирательно откладывается в костях, особенно у детей, подвергая кости и заключенный в них костный мозг постоянному облучению.

Подробно все изложено в исходной статье И.Я. Василенко, О.И. Василенко. Радиоактивный стронций.

Главная | Каталог продукции | Источники ионизирующих излучений | Цезий-137

Цезий-137

Основные технические характеристики:

Одинарная или двойная капсула, содержащая радионуклид цезий-137 в виде таблетки из порошка или гранулы на основе цеолита или стеклоплава.

Область применения:

Гамма-радиография, облучательные установки, радиоизотопные приборы для контроля процессов.

Примечание:

Наружные и внутренние капсулы герметизируются аргонодуговой сваркой. Источники по классам прочности соответствуют С(Е) 65546 по ГОСТ 25926 (ISO 2919). Контроль герметичности производится в соответствии с ГОСТ Р 51919-2002 (ИСО 9978:1992(Е)) иммерсионным методом; предел прохождения - 185 Бк (~5 нКи). Конструкции источников сертифицированы на радиоактивный материал особого вида. Назначенный срок службы: 5 лет с даты выпуска для источников типов ИГИ-Ц-4 и 7 лет для остальных типов источников.

Радиоактивный цезий-137

Об авторе

Иван Яковлевич Василенко, доктор медицинских наук, профессор, лауреат Государственной премии СССР, ведущий научный сотрудник Государственного научного центра РФ — Института биофизики.

Область научных интересов — токсикология продуктов ядерного деления, радиационная гигиена.

Введение

Среди антропогенных радионуклидов, глобально загрязняющих биосферу, особого к себе внимания требует радиоактивный цезий — один из основных источников, формирующих дозы внешнего и внутреннего облучения людей.

Известно 34 изотопа цезия с массовыми числами 114-148, из них только один (133Cs ) стабильный, остальные — радиоактивны.

133Cs относится к рассеянным элементам. В незначительных количествах он содержится практически во всех объектах внешней среды. Кларковое (среднее) содержание нуклида в земной коре — %, в почве — %.

Цезий — постоянный микроэлемент растительных и животных организмов: в живой фитомассе содержится в количестве %, в организме человека — примерно 1 г. Этот нуклид поступает в основном с пищей в количестве 10 мкг/сут.

Выводится из организма преимущественно с мочой (в среднем 9 мкг/сут). Биологическая роль цезия до сих пор окончательно не раскрыта.

Из радиоактивных изотопов цезия наиболее интересен 137Cs с периодом полураспада 30 лет. 137Cs — -излучающий нуклид со средней энергией-частиц 170.8 кэВ.

Его дочерний нуклид 137mBa имеет период полураспада 2.55 мин и испускает -кванты с энергией 661 кэВ. 137Cs широко применяется в медицине (для диагностики и лечения), радиационной стерилизации, дефектоскопии и во многих других технологиях. Другие радиоизотопы цезия имеют меньшее значение.

Источники образования радиоактивного цезия

Известно, что выброс радиоактивного цезия в окружающую среду происходит в основном в результате испытаний ядерного оружия и аварий на предприятиях атомной энергетики.

В реакторах выход 137Cs зависит от делящегося материала и энергии нейтронов, вызывающих деление, и составляет1 по активности 5.1-6.3%.

Относительное содержание радиоцезия в продуктах деления меняется с их «возрастом» (табл.1).

Таблица 1

Испытание ядерного оружия — один из наиболее значимых источников радиоактивного загрязнения планеты, в том числе 137Cs .

К началу 1981 г. суммарная активность2 поступившего в окружающую среду 137Cs достигла 960љПБк. Плотность загрязнения3 в Северном и Южном полушариях и в среднем на земном шаре составляла соответственно 3.42; 0.86 и 3.14 кБк/м2, а на территории бывшего СССР4 в среднем — 3.4љкБк/м2.

В ядерных реакторах в процессе их эксплуатации накапливаются продукты деления (фиссиум) и трансурановые элементы, суммарная активность которых огромна.

Среди радионуклидов фиссиума радиоизотопы цезия занимают значительное место (табл.2). На 1љМВт (эл. мощности) этого радионуклида за год образуется столько, что его активность составляет 130 ТБк (Т, тера — 1012).

Радионуклиды: правда и мифы

Суммарное накопление нуклида в реакторах всего мира (в пересчете на активность) к концу столетия достигнет 900 ЭБк (Э, экса — 1018), что примерно в тысячу раз больше количества поступивших во внешнюю среду радионуклидов при ядерных взрывах.

Таблица 2

Известно, что при нормальных условиях эксплуатации АЭС выбросы радионуклидов, в том числе радиоактивного цезия, незначительны.

Подавляющее количество продуктов ядерного деления остается в топливе. По данным дозиметрического контроля, концентрация цезия в районах расположения АЭС лишь незначительно превышает концентрацию нуклида в контрольных районах, где загрязнение среды происходит за счет испытаний ядерного оружия5. Объем выбросов радионуклидов зависит от конструктивных особенностей реакторов, времени их эксплуатации, способа очистки и состояния оборудования. Источником загрязнения могут быть и радиохимические заводы (РХЗ) по переработке отработанных твэлов, и хранилища радиоактивных отходов.

По прогнозу Научного комитета по действию атомной радиации при ООН (НКДАР), выбросы радиоцезия к 2000љг. могут достигнуть 1.5-5.2 ТБк.

Чрезвычайно сложные ситуации возникают после аварий, когда во внешнюю среду поступает огромное количество радионуклидов и загрязнению подвергаются большие территории.

Например, при аварии на Южном Урале в 1957 г. произошел тепловой взрыв хранилища радиоактивных отходов, и в атмосферу поступили радионуклиды с суммарной активностью 74 ПБк, в том числе 0.2 ПБк 137Cs .

При пожаре на РХЗ в Уинденейле в Великобритании в 1957љг. произошел выброс 12 ПБк радионуклидов, из них 46 ТБк 137Cs . Технологический сброс радиоактивных отходов предприятия «Маяк» на Южном Урале в р.Течу в 1950 г.

составил 102љПБк, в том числе 137Cs 12.4 ПБк. Ветровой вынос радионуклидов из поймы оз.Карачай на Южном Урале в 1967љг. составил 30 ТБк. На долю 137Cs пришлось 0.4 ТБк. Настоящей катастрофой стала в 1986 г. авария на Чернобыльской атомной электростанции (ЧАЭС): из разрушенного реактора было выброшено 1850 ПБк радионуклидов, при этом на долю радиоактивного цезия пришлось 270 ПБк.

Распространение радионуклидов приняло планетарные масштабы. На Украине, в Белоруссии и Центральном экономическом районе Российской Федерации выпало более половины от общего количества радионуклидов, осевших на территории СНГ.

Известны случаи загрязнения внешней среды в результате небрежного хранения источников радиоактивного цезия для медицинских и технологических целей.

Миграция во внешней среде

Цезий легко мигрирует во внешней среде, чему способствуют два обстоятельства.

Во-первых, 137Cs — конечный продукт цепочки распадов:
,
в которой йод и ксенон присутствуют в газовой фазе. При ядерных взрывах образуются мелкодисперсные частицы, адсорбирующие цезий и медленно выпадающие на поверхность земли.

Процесс выпадения ускоряют атмосферные осадки и агрегация частиц с образованием более крупных. Во-вторых, при всех (кроме подземных) ядерных взрывах и аварийных выбросах предприятий атомной энергетики выпадения содержат цезий в хорошо растворимой форме, что имеет принципиальное значение в процессах его миграции. При наземных взрывах на силикатных почво-грунтах образуются слаборастворимые частицы. Содержание радионуклида в атмосферных осадках при ядерных взрывах в слаборастворимой форме колебалось в широких пределах6 — 3.3-82.4% (мас).

Выпавший на поверхность земли радиоактивный цезий перемещается под воздействием природных факторов в горизонтальном и вертикальном направлениях.

Горизонтальная миграция происходит при ветровой эрозии почв, смывании атмосферными осадками в низменные бессточные участки. Скорость миграции зависит от гидрометеорологических факторов (скорости ветра и интенсивности атмосферных осадков), рельефа местности, вида почв и растительности и физико-химических свойств нуклида.

Вертикальный перенос цезия происходит с фильтрационными токами воды и связан с деятельностью почвенных животных и микроорганизмов, выносом из корнеобитаемого слоя почвы в наземные части растений и др.

Подвижность и биологическая доступность нуклида со временем снижается в результате перехода в «слабообменное» состояние.

В первые годы после выпадения цезий в основном содержится в верхнем, 5-10-сантиметровом, слое почвы независимо от ее вида.

Удержание нуклида происходит благодаря высокому содержанию в верхнем слое мелкодисперсных фракций (особенно глинистых) и органических веществ, повышающих сорбционные свойства почвы. Проникновение радиоактивного цезия на глубины 30-50 см, очевидно, занимает десятки и сотни лет, однако перераспределение его по профилю почвы может произойти и быстрее — в результате сельскохозяйственной деятельности.

В этом случае нуклид относительно равномерно рассредоточивается в пределах всего пахотного слоя.

Как правило, «путешествие» 137Cs по пищевым цепочкам начинается с растений, куда нуклид может попасть непосредственно в момент радиоактивных выпадений, либо косвенно — через листья, стебли и корневую систему с пылью и водой.

Уровни поверхностного загрязнения растений определяются их морфологическими особенностями и физико-химическими свойствами выпадающих аэрозолей. Известно, что растения способны задерживать аэрозоли с размером частиц менее 45 мкм. Особенно высокое содержание радионуклидов отмечено у лишайников, чая и хвойных деревьев, что связано с их биологическими особенностями.

Относительно аэрозольного цезия установлено, что более всего он накапливается в капусте, далее по убыванию — свекле, картофеле, пшенице и естественной травянистой растительности. Накопление цезия в растительном покрове (разнотравье) относительно содержания этого нуклида в окружающией среде в средней полосе колеблется от 0.1 до 0.36. Со временем уровни загрязнения растений снижаются в результате прямых потерь (под действием дождя и ветра) и прироста биомассы: так, примерно в течение двух недель содержание нуклидов в пастбищной растительности уменьшается вдвое.

Уровень поглощения растворимого цезия растениями с их поверхности может достигать 10%.

Сначала он накапливается в листьях, зернах, клубнях и корнеплодах, а в дальнейшем поступает в основном через корневую систему. Степень его усвоения колеблется в широких пределах и зависит от вида почв и особенностей растений. Наиболее высокие показатели зафиксированы на торфянисто-болотистых почвах Украинско-Белорусского полесья7. После аварии на ЧАЭС коэффициент перехода цезия (т.е. отношение активности единицы массы растения, Бк/кг, к загрязнению почвы, Бк/км2) в растения из почв полесского типа составлял8: для зерна — , картофеля — , огурцов — , помидоров — .

Основной источник поступления цезия в организм человека — загрязненные нуклидом продукты питания животного происхождения.

Содержание радиоактивного цезия9 в литре коровьего молока достигает 0.8-1.1% от суточного поступления нуклида, козьего и овечьего — 10-20%. Однако в основном он накапливается в мышечной ткани животных: в 1 кг мяса коров, овец, свиней и кур содержится 4, 8, 20 и 26% (соответственно) от суточного поступления цезия. В белок куриных яиц попадает меньше — 1.8-2.1%. Еще в больших количествах цезий накапливается в мышечных тканях гидробионтов: активность 1 кг пресноводных рыб может превышать активность 1 л воды более чем в 1000 раз (у морских — ниже).

Отметим, основной источник цезия для населения России — молочные и зерновые продукты (после аварии на ЧАЭС — молочные и мясные), в странах Европы и США цезий поступает в основном с молочными и мясными продуктами и меньше — с зерновыми и овощными.

1 Гусев Н.Г.

Радиоактивные выбросы в биосфере: Справочник. М., 1986.
2 Напомним: Бк (Беккерель) — единица радиоактивности в системе СИ. Такую активность имеет источник, в котором происходит 1 радиоактивный распад за 1 с. На практике чаще пользуются старой единицей активности Ки (Кюри). В источнике с активностью 1 Ки происходит распадов в 1љс.

Поэтому (приставка П, пэта, означает ).
3 Ионизирующее излучение: источники и биологические эффекты // Докл. за 1982 г. Нью-Йорк: Научный ком. по действию атомной радиации при ООН, 1982.

Т.1.
4 Моисеев А.А. Цезий-137: Окружающая среда. Человек. М., 1980.
5 Гусев Н.Г. // Атомная энергия. 1976. Вып.41. Nљ4. С.254-260.
6 Павлоцкая Ф.И.

Миграция продуктов глобальных выпадений в почвах. М., 1974.
7 Марей А.Н., Зыкова А.С., Сауров М.М. Радиационная коммунальная гигиена. М., 1984.
8 Книжников В.А., Бархударов Р.М., Брук Г.Я. и др. Медицинские аспекты аварии на Чернобыльской атомной электростанции // Материалы науч. конф. 11-13 мая 1988, Киев, 1988. С.66-76.
9 Василенко И.Я.

// Вопр. питания. 1988. N 4. С.4-11.

Назад | Вперед

Журнал Природа

Большинство из нас к этому времени уже перестали задумываться о радиации вокруг нас.

А представители молодого поколения и вообще никогда о ней не думали. Ведь события Чернобыля так далеки и, кажется, что всё уже давно минулось. Однако, к сожалению, это далеко не так. Выбросы после аварии на ЧАЭС были столь велики, что, по оценкам экспертов, в несколько десятков раз превысили радиационное загрязнение после Хиросимы и постепенно покрыли собой весь Земной шар, оседая на полях, в лесах и т.

Источники радиационного загрязнения

В последние годы основными источниками радиационного загрязнения атмосферы являлись испытания ядерного оружия и аварии на объектах атомной энергетики.

В 1996 году все ядерные и многие безъядерные государства подписали договор о полном запрещении ядерных испытаний. Не подписавшие договор Индия и Пакистан, провели последние ядерные испытания в 1998 году.

25 мая 2009 года о проведении ядерного испытания заявила КНДР. То есть количество испытаний ядерного оружия в последние годы заметно уменьшилось.

22.Краткая характеристика цезия-137, стронция-90 и плутония-239

А вот что касается эксплуатации АЭС, то здесь ситуация обстоит сложнее. При нормальных условиях эксплуатации АЭС выбросы радионуклидов незначительны. Подавляющее количество продуктов ядерного деления остаётся в топливе. По данным дозиметрического контроля, концентрация радионуклидов, в частности цезия, в районах расположения АЭС лишь незначительно превышает концентрацию нуклидов в районах, где загрязнение среды происходит за счёт испытаний ядерного оружия (Гусев Н.

Г. // Атомная энергия. 1976. Вып. 41. №4. С.254-260.).
Наиболее сложные ситуации возникают после аварий на самих АЭС или в хранилищах радиоактивных отходов, когда во внешнюю среду поступает огромное количество радионуклидов и загрязнению подвергаются большие территории.

Наиболее известные из аварий – Кыштым (1957 г., СССР), Три-Майл-Айленд (1979г., США), Чернобыль (1986г., СССР), Гояния (1987г., Бразилия), Токаймура (1999г., Япония), Флёрюс (2006г., Бельгия), Фукусима (2011г., Япония). Можно заметить, что география аварий весьма обширна и охватывает весь Земной шар – от Азии до Европы и Америки.

А сколько ещё происходило и происходит более мелких аварий, малоизвестных, а то и вовсе неизвестных общественности, каждая из которых, как правило, сопровождается выбросом радиации в окружающую среду, то есть радиационным загрязнением.

Источником радиационного загрязнения могут быть и радиохимические заводы по переработке отработанных твэлов, и хранилища радиоактивных отходов.

Радиоактивные изотопы и их воздействие на человека

радиоактивных изотопов. Все эти изотопы при распаде являются источниками гамма- и бета-излучений, имеющих самую большую энергию проникновения.

Элемент йод необходим для синтеза гормонов щитовидной железы, регулирущей работу всего организма. Гормоны, которые она вырабатывает (тиреоидные) влияют на размножение, рост, дифференцировку тканей и обмен веществ, поэтому нехватка йода является скрытой причиной многих заболеваний, называемых йододефицитными.

А вот его радиоактивный изотоп йод-131, наоборот, оказывает негативное действие – вызывает мутации и гибель клеток, в которые он проник, и окружающих тканей на глубину нескольких миллиметров.

Для пополнения запасов организма йодом необходимо употреблять в пищу желтые овощи и фрукты – грецкие орехи, мёд и т.

Стронций

Стронций является составной частью микроорганизмов, растений и животных. Это аналог кальция, поэтому он наиболее эффективно откладывается в костной ткани. Никакого негативного влияния на организм он не производит, за исключением случаев недостатка кальция, витамина Д, неполноценного питания и других факторов.

А вот радиоактивный стронций-90 практически всегда негативно воздействует на организм человека. Откладываясь в костной ткани, он облучает костную ткань и костный мозг, что увеличивает риск заболевания раком костного мозга, а при поступлении большого количества может вызвать лучевую болезнь.

Наибольшими источниками радиоактивного излучения изотопа стронций-90 являются лесные ягоды, мхи и лекарственные травы. Перед употреблением ягод их необходимо как можно более тщательно промывать под проточной водой.
Продукты, содержащие кальций способствуют выведению стронция из организма — творог и др. Венгерский врач Кромпхер с группой медиков и биологов в результате 10 — летних исследований установил, что яичная скорлупа — прекрасное выводящее средство радионуклидов, препятствует накоплению в костном мозге ядер стронция-90.

Перед употреблением скорлупы её необходимо прокипятить не менее 5-ти минут, растолочь в ступе (но не в кофемолке), растворить в лимонной кислоте, принимать на завтрак с творогом или кашей. Также в число факторов способных снижать усвоение радиоактивного стронция, входит потребление хлеба из темных сортов муки.

Особого к себе внимания требует радиоактивный цезий-137, как один из основных источников, формирующих дозы внешнего и внутреннего облучения людей. Из 34 изотопов цезия только один цезий-133 не радиоактивный и является постоянным микроэлементом растительных и животных организмов.

Биологическая роль цезия пока ещё окончательно не раскрыта.
В первые годы после выпадения (после ядерных испытаний, аварий и т. п.) радиоактивный цезий-137 в основном содержится в верхнем, 5-10-сантиметровом, слое почвы независимо от её вида. Под воздействием природных факторов цезий постепенно мигрирует в горизонтальном и вертикальном направлениях.

При проведении сельскохозяйственных работ цезий проникает вглубь земли на глубину пахоты и из года в год снова и снова перемешивается с землёй, создавая определённый фон радиоактивного излучения (Павлоцкая Ф.

И. Миграция продуктов глобальных выпадений в почвах. М., 1974).
В организм животных и человека радиоактивный цезий проникает в основном через органы дыхания и пищеварения. Наибольшее количество цезия-137 поступает в организм с грибами и продуктами животного происхождения – молоко, мясо, яйца и пр., а также с зерновыми и овощами.

В коровьем молоке относительное содержание цезия-137 в 10-20 раз меньше, нежели в козьем или овечьем молоке (Василенко И.

Я. // Вопросы питания. 1988. № 4. С. 4-11.). Кроме того, содержание цезия-137 заметно уменьшается в продуктах переработки молочного сырья – сыре, масле и пр.
Больше всего цезий-137 оседает в мышечной ткани животных, причём относительное его содержание в мясе свиней и кур (кроме белка яиц) в 5-6 раз больше, нежели в мясе коров. Перед приготовлением мяса его желательно предарительно вымачивать в уксусной воде.
Для уменьшения поступлений в организм радиоактивного цезия с овощами необходимо качественно их промывать и обрезать корни овощных культур перед их употреблением в пищу.

У капусты целесообразно удалять хотя бы верхний слой листьев и не использовать в пищу кочерыжку. Любой отваренный продукт теряет при варке до половины радионуклидов (в пресной воде до 30%, соленой до 50%).

Что касается грибов, то наиболее подвержены накоплению радиоактивного цезия-137 белый гриб и поддубовик, наименее — опята. Перед употреблением в пищу любых грибов вначале необходимо пообрезать им ножки, желательно ближе к шляпке, вымочить и поддать термической обработке – три раза прокипятить в течении 30 минут для каждого кипячения, с полной сменой воды.

Слитую воду нигде использовать нельзя. При этом, как показывает практика, не менее 90% нуклидов будет выведено из обработанных таким образом грибов.
Очень высока степень накопления радиоактивного цезия в тканях пресноводных рыб, что также необходимо учитывать при её приготовлении. Желательно перед приготовлением рыбы вымочить её в воде с добавлением большого количества уксуса.
Выводится цезий-137 из организма через почки (мочой) и кишечник.

По данным Международной комиссии по радиологической защите, биологический период выведения половины накопленного цезия-137 для человека принято считать равным 70 суток. Неотложная помощь при облучении цезием-137 должна быть направлена на его немедленное выведение из организма и включает промывание желудка, назначение сорбентов, рвотных, слабительных, мочегонных средств и дезактивацию кожных покровов.

Заключение

Для уменьшения влияния радиоизлучения изотопов на растительность сельскохозяйственных угодий, а также лесную растительность необходимо проводить нейтрализацию этих излучений, используя соответствующие нейтрализаторы.

Например, для нейтрализации радиоизлучений радиоактивного изотопа стронций-90 необходимо использовать удобрения на основе кальция, а для нейтрализации изотопа цезий-137 – калиевые удобрения.

Такой процесс принято называть дезактивацией. Дезактивировать можно не только поля, но и леса.
В странах, пострадавших от Чернобыльской аварии существуют государственные программы дезактивации зараженных территорий. Так, в Беларуси на дезактивацию зараженных территорий государство выделяет 23% средств от общей суммы, выделяющейся на все Чернобыльские программы, в том числе и на выплаты пострадавшим, в России выделяется немного меньше, в Украине же на эти цели выделяется менее 1%, что говорит само за себя.

05.05.2011 09:00

Николай Сиверец

Свойства цезия 137

Схема распада цезия-137 Таблица нуклидов

Общие сведения Название, символ Цезий-137, 137Cs Альтернативные названия радиоце́зий Нейтронов 82 Протонов 55 Свойства нуклида Атомная масса 136,9070895(5) а. е. м. Избыток массы −86 545,6(5) кэВ Удельная энергия связи (на нуклон) 8 388,956(3) кэВ Период полураспада 30,1671(13) лет Продукты распада 137Ba Родительские изотопы 137Xe (β−) Спин и чётность ядра 7/2+ Канал распада Энергия распада β− 1,17563(17) МэВ

Це́зий-137 , известен также как радиоце́зий - радиоактивный нуклид химического элемента цезия с атомным номером 55 и массовым числом 137.

Образуется преимущественно при делении ядер в ядерных реакторах и ядерном оружии.

Цезий-137 - один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций.

Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления 137Cs наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников.

В организме животных 137Cs накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и североамериканских водоплавающих птиц. Накапливается в грибах, ряд которых (маслята, моховики, свинушка, горькушка, польский гриб) считается «аккумуляторами» радиоцезия.

Активность одного грамма этого нуклида составляет приблизительно 3,2 ТБк.

  • 1 Образование и распад
  • 2 Цезий-137 в окружающей среде
    • 2.1 Ядерные испытания
    • 2.2 Радиационные аварии
    • 2.3 Локальные заражения
  • 3 Биологическое действие
  • 4 Получение
  • 5 Применение
  • 6 См.
  • 7 Ссылки
  • 8 Примечания

Образование и распад

Цезий-137 является дочерним продуктом β−-распада нуклида 137Xe (период полураспада составляет 3,818(13) мин):

Цезий-137 претерпевает бета-распад (период полураспада 30,17 лет), в результате которого образуется стабильный изотоп бария 137Ba:

В 94,4 % случаев распад происходит c промежуточным образованием ядерного изомера бария-137 137Bam (его период полураспада составляет 2,55 мин), который в свою очередь переходит в основное состояние с испусканием гамма-кванта с энергией 661,7 кэВ (или конверсионного электрона с энергией 661,7 кэВ, уменьшенной на величину энергии связи электрона).

Суммарная энергия, выделяющаяся при бета-распаде одного ядра цезия-137, составляет 1175,63 ± 0,17 кэВ.

Цезий-137 в окружающей среде

Карта радиационного загрязнения цезием-137 территорий, граничащих с Чернобыльской зоной отчуждения (на 1996 г.)

Выброс цезия-137 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики.

Ядерные испытания

Радиационные аварии

  • При аварии на Южном Урале в 1957 г.

    произошел тепловой взрыв хранилища радиоактивных отходов, в результате которого в атмосферу поступили радионуклиды с суммарной активностью 74 ПБк, в том числе 0,2 ПБк 137Cs.

  • При аварии на реакторе в Уиндскейле в Великобритании в 1957 г. произошел выброс 12 ПБк радионуклидов, из них 46 ТБк 137Cs.
  • Технологический сброс радиоактивных отходов предприятия «Маяк» на Южном Урале в р.

    Течу в 1950 г. составил 102 ПБк, в том числе 137Cs 12,4 ПБк.

  • Ветровой вынос радионуклидов из поймы оз. Карачай на Южном Урале в 1967 г. составил 30 ТБк. На долю 137Cs пришлось 0,4 ТБк.
  • В целях глубинного зондирования земной коры по заказу министерства геологии произведён подземный ядерный взрыв 19 сентября 1971 г. около д. Галкино в Ивановской области. На 18 минуте после взрыва в метре от скважины с зарядом образовался фонтан из воды и грязи. В настоящее время мощность излучения составляет порядка 3 миллирентген в час, изотопы цезий-137 и стронций-90 продолжают выходить на поверхность.
  • В 1986 г.

    во время аварии на Чернобыльской атомной электростанции (ЧАЭС) из разрушенного реактора было выброшено 1850 ПБк радионуклидов, при этом на долю радиоактивного цезия пришлось 270 ПБк. Распространение радионуклидов приняло планетарные масштабы. На Украине, в Белоруссии и Центральном экономическом районе Российской Федерации выпало более половины от общего количества радионуклидов, осевших на территории СНГ. Среднегодовая концентрация цезия-137 в приземном слое воздуха на территории СССР в 1986 году повысилась до уровня 1963 года (в 1963 г.

    наблюдалось повышение концентрации радиоцезия в результате проведения серии атмосферных ядерных взрывов в 1961-1962 гг.)

  • В 2011 г. во время аварии на АЭС Фукусима-1 из разрушенного реактора было выброшено значительное количество цезия-137 (агентство по атомной безопасности считает, что выброс радиоактивного цезия-137 из трех реакторов составил 770 ПБк, оценки ТЕРСО в два раза ниже).

    Распространение, в основном, происходит через воды Тихого океана.

Локальные заражения

Известны случаи загрязнения внешней среды в результате небрежного хранения источников цезия-137 для медицинских и технологических целей. Наиболее известным в этом отношении является инцидент в Гоянии, когда мародерами из заброшенной больницы была похищена деталь из установки для радиотерапии, содержащая цезий-137.

В течение более чем двух недель с порошкообразным цезием контактировали все новые люди, и никто из них не знал о связанной с ним опасности. Радиоактивному заражению подверглись приблизительно 250 человек, четверо из них умерли.

На территории СССР инцидент с длительным облучением жителей одного из домов цезием-137 произошёл в 1980-х годах в Краматорске.

Биологическое действие

Внутрь живых организмов цезий-137 в основном проникает через органы дыхания и пищеварения.

Хорошей защитной функцией обладает кожа (через неповреждённую поверхность кожи проникает только 0,007 % нанесённого препарата цезия, через обожжённую - 20 %; при нанесении препарата цезия на рану всасывание 50 % препарата наблюдается в течение первых 10 мин, 90 % всасывается только через 3 часа).

Около 80 % попавшего в организм цезия накапливается в мышцах, 8 % - в скелете, оставшиеся 12 % распределяются равномерно по другим тканям.

Накопление цезия в органах и тканях происходит до определённого предела (при условии его постоянного поступления), при этом интенсивная фаза накопления сменяется равновесным состоянием, когда содержание цезия в организме остаётся постоянным.

Время достижения равновесного состояния зависит от возраста и вида животных. Равновесное состояние у сельскохозяйственных животных наступает примерно через 10-30 дней, у человека приблизительно через 430 суток.

Цезий-137 выводится в основном через почки и кишечник.

Через месяц после прекращения поступления цезия из организма выводится примерно 80 % введённого количества, однако при этом следует отметить, что в процессе выведения значительные количества цезия повторно всасываются в кровь в нижних отделах кишечника.

Биологический период полувыведения накопленного цезия-137 для человека принято считать равным 70 суткам (согласно данным Международной комиссии по радиологической защите).

Тем не менее, скорость выведения цезия зависит от многих факторов - физиологического состояния, питания и др. (например, приводятся данные о том, что период полувыведения для пяти облучённых человек существенно различался и составлял 124, 61, 54, 36 и 36 суток).

При равномерном распределении цезия-137 в организме человека с удельной активностью 1 Бк/кг мощность поглощённой дозы, по данным различных авторов, варьирует от 2,14 до 3,16 мкГр/год.

При внешнем и внутреннем облучении биологическая эффективность цезия-137 практически одинакова (при сопоставимых поглощённых дозах).

Вследствие относительно равномерного распределения этого нуклида в организме органы и ткани облучаются равномерно. Этому также способствует высокая проникающая способность гамма-излучения нуклида 137Bam, образующегося при распаде цезия-137: длина пробега гамма-квантов в мягких тканях человека достигает 12 см.

Развитие радиационных поражений у человека можно ожидать при поглощении дозы примерно в 2 Гр и более. Симптомы во многом схожи с острой лучевой болезнью при гамма-облучении: угнетённое состояние и слабость, диарея, снижение массы тела, внутренние кровоизлияния.

Характерны типичные для острой лучевой болезни изменения в картине крови. Уровням поступления в 148, 370 и 740 МБк соответствуют лёгкая, средняя и тяжёлая степени поражения, однако лучевая реакция отмечается уже при единицах МБк.

Помощь при радиационном поражении цезием-137 должна быть направлена на выведение нуклида из организма и включает в себя дезактивацию кожных покровов, промывание желудка, назначение различных сорбентов (например, сернокислого бария, альгината натрия, полисурмина), а также рвотных, слабительных и мочегонных средств.

Эффективным средством для уменьшения всасывания цезия в кишечнике является сорбент ферроцианид, который связывает нуклид в неусваиваемую форму. Кроме того, для ускорения выведения нуклида стимулируют естественные выделительные процессы, используют различные комплексообразователи (ДТПА, ЭДТА и др.).

Получение

Из растворов, полученных при переработке радиоактивных отходов ядерных реакторов, 137Cs извлекается методами соосаждения с гексацианоферратами железа, никеля, цинка или фторовольфраматом аммония.

Используют также ионный обмен и экстракцию.

Применение

Цезий-137 используется в гамма-дефектоскопии, измерительной технике, для радиационной стерилизации пищевых продуктов, медицинских препаратов и лекарств, в радиотерапии для лечения злокачественных опухолей.

Также цезий-137 используется в производстве радиоизотопных источников тока, где он применяется в виде хлорида цезия (плотность 3,9 г/см³, энерговыделение около 1,27 Вт/см³).

Цезий-137 используется в датчиках предельных уровней сыпучих веществ (уровнемерах) в непрозрачных бункерах.

Цезий-137 имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада и менее жесткое гамма-излучение.

В связи с этим приборы на основе 137Cs долговечнее, а защита от излучения менее громоздка. Однако, эти преимущества становятся реальными лишь при отсутствии примеси 134Cs с более коротким периодом полураспада и более жестким гамма-излучением.

См. также

Ссылки

  • Радиоактивный цезий-137
  • Загрязнение цезием-137 на территории Белорусии
  • ATSDR - Toxicological Profile: Cesium

Примечания

  1. 12345 G.

    Audi, A.H. Wapstra, and C. Thibault (2003). «The AME2003 atomic mass evaluation (II). Tables, graphs, and references.». Nuclear Physics A 729 : 337-676. DOI:10.1016/j.nuclphysa.2003.11.003.

    Bibcode: 2003NuPhA.729..337A.

  2. 123 G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties». Nuclear Physics A 729 : 3–128. DOI:10.1016/j.nuclphysa.2003.11.001.

    Bibcode: 2003NuPhA.729….3A.

  3. А. Г. Шишкин. Чернобыль (2003). - Радиоэкологические исследования грибов и дикорастущих ягод. Проверено 27 июля 2009.Архивировано из первоисточника 22 августа 2011.
  4. INEEL & KRI/R.G. Helmer and V.P. Chechev/Decay scheme of Caesium-137
  5. 1234567891011121314 Василенко И.

    Я. Радиоактивный цезий-137 // Природа. - 1999. - № 3. - С. 70-76.

  6. Геофизические аспекты катастрофы Чернобыльской АЭС
  7. Выбросы РВ с АЭС Фукусима-1 были в два раза выше объявленных ТЕРСО — агентство
  8. «Biological Half-life»
  9. Онлайн-энциклопедия «Кругосвет»: Цезий
  10. Популярная библиотека химических элементов.

Цезий-137 Информация о

Цезий-137
Цезий-137

Цезий-137 Информация Видео


Цезий-137 Просмотр темы.

Цезий-137 что, Цезий-137 кто, Цезий-137 объяснение

There are excerpts from wikipedia on this article and video

РАДИОАКТИВНЫЕ ЭЛЕМЕНТЫ

Это химические элементы, имеющие нестабильные атомные ядра, которые самопроизвольно распадаются, превращаясь в атомные ядра других элементов и при этом испуская частицы (электроны, протоны, позитроны, нейтроны) и кванты электромагнитного излучения (рентгеновские и гамма-лучи), которые могут вызывать мутагенные, канцерогенные, тератогенные и другие изменения в живых организмах, а также негативные экологические явления.
  Здесь приведены данные о некоторых радиоактивных элементах, в обнаруженных в местах радиоактивного загрязнения на территории Москвы.

Цезий-137, Cs-137
  Цезий-137, известен также как радиоцезий - один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека.
  В организме животных 137Cs накапливается главным образом в мышцах и печени
  Выброс цезия-137 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики
  Известны случаи загрязнения внешней среды в результате небрежного хранения источников цезия-137 для медицинских и технологических целей.
  Биологическое действие
  Внутрь живых организмов цезий-137 в основном проникает через органы дыхания и пищеварения. Хорошей защитной функцией обладает кожа

Поглощённая доза излучения измеряется энергией ионизирующего излучения, переданного массе облучаемого вещества.
  Единица поглощённой дозы – грей (Гр), равный 1 джоулю, поглощённому 1 кг вещества
  1 Гр = 1Дж/кг = 100 рад.

Развитие радиационных поражений у человека можно ожидать при поглощении дозы примерно в 2 Гр и более. Симптомы во многом схожи с острой лучевой болезнью при гамма-облучении: угнетённое состояние и слабость, диарея, снижение массы тела, внутренние кровоизлияния
  Радионуклиды Cs-137, проникая в организм человека, инкорпорируются жизненно важными органами. При этом, в клетках происходят дистрофические и некробиотические изменения, связанные в первую очередь с нарушением энергетических механизмов и приводящие к нарушениям жизненно-важных функций организма. Тяжесть поражения находится в прямой зависимости от количества Cs-137 инкорпорированного организмом и отдельными органами. Эти поражения могут представлять опасность, прежде всего, как индукторы мутаций в генетическом аппарате половых и соматических клеток.

Способность Cs-137 вызывать мутации в половых клетках, будет являться в будущих поколениях основой для возникновения внутриутробной гибели зародыша, врожденных пороков развития, патологии плода и новорожденного, заболеваний взрослого организма, связанных с недостаточной генной активностью.

Это внутреннее облучение организма также чрезвычайно опасно и тем, что оно сочетается со способностью радионуклидов Cs-137 и продуктов их распада в виде бария, воздействовать на биологические структуры, взаимодействовать с рецепторным аппаратом клеточных мембран, изменять состояние регуляторных процессов.
  Выявлена зависимость между частотой нарушений сердечной деятельности у детей и содержанием радионуклидов в их организме. Следует обратить особое внимание на то, что присутствие даже относительно небольших количеств Cs-137 в организме детей 10-30 Бк/кг (при этом, в ткани сердца концентрация данного радионуклида значительно большая) приводит к увеличению в два раза числа детей с электрокардиографическими нарушениями.
  В этой связи, факторы внешней среды, подавляющие функцию систем, регулирующих (стимулирующих) активность генетического аппарата клеток, будут являться индукторами (провокаторами) возникновения многих заболеваний. Cs-137 способен в относительно небольших количествах, подавлять активность регуляторных систем организма, и прежде всего, иммунной системы.
  Период полураспада цезия-137 составляет 30 лет.

Радий, Ra-226
  радиоактивный изотоп химического элемента радия с атомным номером 88 и массовым числом 226. Принадлежит к радиоактивному семейству урана-238
  Наиболее устойчивым изотопом является радий-226 (226Ra), образующийся при распаде урана. Период полураспада радия-226 составляет 1600 лет, в процессе распада образуется радиоактивный газ радон.
  Радий-226 является источником альфа-излучения и считается потенциально опасным для костной ткани человека.
  В ничтожных концентрациях присутствует в природных водах.
  Применение
  Соли радия используются в медицине как источник радона (см. РАДОН) для приготовления радоновых ванн.

Развиваются опухоли костной ткани и органов, заключённых в костной капсуле (кроветворная ткань, гипофиз) или топографически близких к ней (слизистая ротовой полости, гайморова полость).

Кобальт-60, Co-60
  Кобальт-60, радиокобальт - радиоактивный нуклид химического элемента кобальта с атомным номером 27 и массовым числом 60. В природе практически не встречается из-за малого периода полураспада. Открыт в конце 1930-х годов

Активность одного грамма этого нуклида составляет приблизительно 41,8 ТБк. Период полураспада кобальта-60 составляет 5,2 года
  Применение Кобальт-60 используется в производстве источников гамма-излучения с энергией около 1,3 МэВ, которые применяются для:
  - стерилизации пищевых продуктов, медицинских инструментов и материалов;
  - активации посевного материала (для стимуляции роста и урожайности зерновых и овощных культур);
  - обеззараживания и очистки промышленных стоков, твёрдых и жидких отходов различных видов производств;
  - радиационной модификации свойств полимеров и изделий из них;
  - радиохирургии различных патологий (см. «кобальтовая пушка», гамма-нож);
  - гамма-дефектоскопии.
  Также Кобальт-60 используется в системах контроля уровня металла в кристализаторе при непрерывной разливке стали. Является одним из изотопов, применяющихся в радиоизотопных источниках энергии.
  Его лучи обладают высокой проникающей способностью. По мощности излучения 17 граммов радиоактивного кобальта эквивалентны 1 килограмму радия - самого мощного природного источника радиации. Вот почему при получении, хранении и транспортировке этого изотопа, как, впрочем, и других, тщательно соблюдают строжайшие правила техники безопасности, принимают все необходимые меры, чтобы надежно оградить людей от смертоносных лучей.

У радиоактивного кобальта много «профессий». Все более широкое применение в промышленности находит, например, гамма-дефектоскопия, т.е. контроль качества продукции путем просвечивания ее гамма-лучами, источником которых служит изотоп кобальт-60. Такой метод контроля позволяет с помощью сравнительно недорогой и компактной аппаратуры легко выявлять трещины, поры, свищи и другие внутренние дефекты массивных отливок, сварных швов, узлов и деталей, находящихся в труднодоступных местах. В связи с тем, что гамма-лучи распространяются источником равномерно во все стороны, метод дает возможность контролировать одновременно большое число объектов, а цилиндрические изделия проверять сразу по всему периметру.

Радиоактивный кобальт используют для контроля и регулирования уровня расплавленного металла в плавильных печах, уровня шихтовых материалов в домнах и бункерах, для поддержания уровня жидкой стали в кристаллизаторе установок непрерывной разливки.

Прибор, называемый гамма-толщиномером, быстро и с большой степенью точности определяет толщину обшивки судовых корпусов, стенок труб, паровых котлов и других изделий, когда к их внутренней поверхности невозможно подобраться и поэтому обычные приборы оказываются бессильны.

Находит кобальт применение и в медицине. Крупицы изотопа кобальт-60, помещенные в медицинские «пушки», не причиняя вреда организму человека, бомбардируют гамма-лучами внутренние злокачественные опухоли, губительно влияя на быстро размножающиеся больные клетки, приостанавливая их деятельность и тем самым ликвидируя очаги страшной болезни.
  В аппарате для облучения глубокозалегающих злокачественных опухолей, «кобальтовой пушке» ГУТ-400 (гамма-установка терапевтическая), количество кобальта-60 соответствует по своей активности 400 г радия. Это очень большая величина, такого количества радия нет ни в одной лаборатории. Но именно высокая активность позволяет предпринимать попытки лечения опухолей, расположенных в глубине организма больного.
  Однако, несмотря на свою столь обширную плезность радиация есть радиация и бесконтрольное облучение приводит к описанным выше печальным последствиям.

Торий-232, Th-232
  Торий-232 - природный радиоактивный нуклид химического элемента тория с атомным номером 90 и массовым числом 232.
  Является наиболее долгоживущим изотопом тория, альфа-радиоактивен с периодом полураспада 1,405·10 10 (14 млрд.) лет.
  Торий-232 является альфа – излучателем
  Активность одного грамма этого нуклида составляет 4 070 Бк.
  В виде препарата торотраста суспензия диоксида тория использовалась в качестве контрастного вещества при ранней рентгенодиагностике. В настоящее время препараты тория-232 классифицируются как канцерогенные
  Поступление тория в желудочно-кишечный тракт (тяжелый металл, к тому же радиоактивный!) не вызывает отравления. Объясняется это тем, что в желудке – кислая среда, и в этих условиях соединения тория гидролизуются. Конечный продукт – нерастворимая гидроокись тория, которая выводится из организма. Острое отравление способна вызвать лишь нереальная доза в 100 г тория...
  Однако чрезвычайно опасно попадание тория в кровь. Следствием этого могут быть заболевания кроветворной системы, образование специфических опухолей.

Плутоний-239, Pu-239
  Плутоний-239 (англ. plutonium-239) - радиоактивный нуклид химического элемента плутония с атомным номером 94 и массовым числом 239.
  В природе встречается в чрезвычайно малых количествах в урановых рудах.
  Активность одного грамма этого нуклида составляет приблизительно 2,3 ГБк.
  Плутоний-239 имеет период полураспада 24 100 лет.
  Плутоний-239 используют:
  - в качестве ядерного топлива в ядерных реакторах на тепловых и особенно на быстрых нейтронах;
  - при изготовлении ядерного оружия;
  - в качестве исходного вещества для получения трансплутониевых элементов.
  Плутоний был открыт в конце 1940 г.
  Хотя плутоний, по-видимому, химически токсичен, как и любой тяжелый металл, этот эффект выражается слабо по сравнению с его радиотоксичностью. Токсические свойства плутония появляются как следствие альфа-радиоактивности.
Альфа частицы представляют серьезную опасность только в том случае, если их источник находится в теле (т.е. плутоний должен быть принят внутрь). Хотя плутоний излучает еще и гамма-лучи и нейтроны, которые могут проникать в тело снаружи, уровень их слишком мал, чтобы причинить сильный вред.

Альфа-частицы повреждают только ткани, содержащие плутоний или находящиеся в непосредственном контакте с ним. Значимы два типа действия: острое и хроническое отравления. Если уровень облучения достаточно высок, ткани могут страдать острым отравлением, токсическое действие проявляется быстро. Если уровень низок, создается накопляющийся канцерогенный эффект.

Плутоний очень плохо всасывается желудочно-кишечным трактом, даже когда попадает в виде растворимой соли, впоследствии она все равно связывается содержимым желудка и кишечника. Загрязненная вода, из-за предрасположенности плутония к осаждению из водных растворов и к формированию нерастворимых комплексов с остальными веществами, имеет тенденцию к самоочищению.

Радиоактивный стронций-90

Источники загрязнения окружающей среды. Наиболее значимый источник загрязнения внешней среды стронцием-90 — испытания ядерного оружия, причем отмечается отчетливо выраженная локальность выпадений (плотность выпадений зависит от физико-географических и климатических особенностей определенных районов). Поступает во внешнюю среду этот радионуклид также с АЭС и заводов по переработке отработанного ядерного топлива (находится в выбросах в легкорастворимой форме). В условиях нормальной эксплуатации АЭС выбросы радиоактивного стронция незначительны.

Радиоизотопы стронция характеризуются большим выходом в реакциях деления урана и плутония и высокой подвижностью в экологических цепях природной среды. Все это должно быть учтено в конструкции атомных реакторов, при определении продолжительности их эксплуатации и системы обращения с радиоактивными отходами.

Пищевые пути (цепи). Основные пищевые цепи миграции радиоактивного стронция: атмосфера — растения — человек; атмосфера — почва — растения — человек; атмосфера — почва — растения — животные — человек; атмосфера — водоемы — питьевая вода — человек; атмосфера — водоемы — гидробионты — рыба — человек;

сточные воды — почва — растения — человек; сточные воды — почва — растения — животные — человек; сточные воды — гидробионты — рыба — человек.

Стронций накапливается в зеленых растениях, в частности в злаковых (зерно), ис хлебопродуктами поступает в организм человека. Через сено (корм) он попадает в ткани животных (коров). Поэтому молоко — второй после хлеба путь поступления стронция в организм человека. Наконец, радиоактивный стронций, выпавший на поверхность водоемов или смытый туда поверхностными стоками, легко поглощается одноклеточными водорослями (фитопланктон), по пищевой цепи накапливается рачками и другими мелкими животными (зоопланктон), а затем рыбой.

Концентрация стронция по мере продвижения по пищевой цепи возрастает, в теле некоторых рыб она может быть в десятки тысяч раз выше, чем в воде. Таким образом, рыба, в особенности ее скелет,— другой распространенный пищевой канат поступления стронция в организм человека. Наконец, важным источником радиоактивного стронция являются овощи и плоды.

Стронций по своим качествам, как уже говорилось, весьма близок к кальцию и циркулирует в биосфере вместе с ним. Атмосферный воздух является первичным резервуаром, откуда стронций поступает в водоемы и на сушу. Осаждение радионуклидов из воздуха определяется гравитацией, оседанием на инертной пыли, постоянно присутствующей в атмосфере, и удалением атмосферными осадками (дождем, снегом). Время пребывания частиц радиоактивного стронция в атмосфере составляет 30—40 сут, а в стратосфере — несколько лет.

Почва имеет особое значение как депо радиоактивного стронция (почти весь он находится в подвижной форме). Вначале он скапливается на ее поверхности, а затем медленно перераспределяется по ее профилю. Стронций усваивается твердой фазой почвы значительно слабее, чем радиоактивный цезий. На миграцию радиоактивного стронция в почве влияют: климатические условия, рельеф местности, гидрологический режим, характер растительности, агротехнические мероприятия и вид почвы. Почвы по степени возрастания поглотительной способности радиоактивного стронция, в свою очередь, можно расположить в следующий ряд: чернозем — каштановые — дерново-подзолистые.

В растения радиоактивный стронций может поступать вследствие непосредственного загрязнения наземной их части (в момент выпадения радионуклида и вторичного пылеобразования), поглощения из почвы через корневую систему и орошения водами, его содержащими. Степень задерживания радионуклида на растительном покрове обусловлена особенностями растений, размерами радиоактивных частиц и метеорологическими условиями. Осевший на поверхность растений стронций-90 может ею всасываться. Коэффициент задержки радионуклидов глобальных выпадений дикой и сельскохозяйственной растительностью равен примерно 25 % . Время удаления (дождем, ветром и др.) с травянистых растений 50 % задержанных радионуклидов для зон умеренного климата составляет 1—5 нед. Накопление радиоактивного стронция обратно пропорционально количеству обменного кальция в почве, кроме того, оно зависит от вида и сорта растений. Так, больше всего его накапливается в бобовых, при этом в семенах, плодах и клубнях значительно меньше, чем в листьях и стеблях.

Радиоактивный стронций в основном поступает в организм животных с кормами. Переход радионуклида в продукты животного происхождения зависит от его биологической доступности, видовых и возрастных особенностей животных и их физиологического состояния. У телят, ягнят, козлят и поросят всасывание стронция в несколько раз больше, чем у взрослых животных. Основная часть радиоактивного стронция накапливается в костях, преимущественно в эпифазах (суставах). Таким образом, наибольшее накопление стронция возможно в растущем организме, причем этот радионуклид, осевший в костях, крайне трудно удаляется из организма. По степени его накопления в скелете сельскохозяйственных животных их можно расположить в следующий ряд: крупный рогатый скот — козы — овцы — свиньи — куры. Наибольшее накопление радионуклида отмечается в паренхиматозных органах — печени, почках, легких, минимальное — в мышцах, а особенно — в сапе. По степени отложения радиоактивного стронция в мышцах и паренхиматозных органах сельскохозяйственных животных их также можно составить в ряд: крупный рогатый скот — овцы — куры. У взрослых животных стронций в мягких тканях накапливается в большем количестве, чем у молодых, но у молодых животных он выводится значительно быстрее, чем у взрослых. Увеличение в рационе питания животных кальция ускоряет выведение стронция-90. У лактирующих животных радионуклид в значительных количествах выводится с молоком.

До 96 % радиоактивного стронция содержится в скорлупе яиц, 3,5 — в желтке и 0,5 % — в белке.

Водоемы представляют особую опасность, поскольку в них радиоактивный стронций накапливается. Гидробионтами, в частности рыбами, он усваивается по пищевой цепи и непосредственно из воды. При этом содержание стронция-90 в гидробионтах зависит не только от его концентрации в воде, но и от степени ее минерализации: с ее уменьшением накопление радионуклидов в гидробионтах повышается.

В итоге можно сделать вывод о том, что основным источником поступления радиоактивного стронция в организм человека являются продукты растительного и животного происхождения. Растворимые формы стронция хорошо всасываются в желудочно-кишечном тракте. Особую опасность радионуклид представляет для детей, в организм которых он поступает с молоком и накапливается в больших количествах в костях. С возрастом усвояемость радиоактивного стронция снижается. Высокое содержание в рационе питания кальция препятствует всасыванию радиоактивного стронция, который относится к наиболее опасным высокотоксичным радионуклидам. Большие его дозы вызывают у человека острую лучевую болезнь, длительное воздействие небольших доз приводит к развитию хронической ее формы. Для последней характерно поражение в отдаленные сроки кроветворной системы, развитие болезней крови (лейкозы) и костных опухолей.

Радиоактивный цезий-137

Среди техногенных радионуклидов особую опасность представляют радиоактивные изотопы цезия, особенно долгоживущий цезий-137 с периодом полураспада 30±0,2 года. Для этого радионуклида характерна высокая подвижность в экологических цепях природной среды и способность накапливаться в ее отдельных звеньях.

Источники загрязнения окружающей среды. Основным источником образования цезия-137 являются испытания ядерного оружия и предприятия ядерной энергетики. В больших количествах радионуклид накапливается в ядерных реакторах в процессе их эксплуатации. В условиях нормальной эксплуатации АЭС радиоактивные выбросы незначительны и зависят от конструкции ядерного реактора, типа систем очистки от радиоактивных веществ и выбрасываемого из станции воздуха, времени эксплуатации реактора и др. Загрязнителями окружающей среды цезием-137 могут также быть заводы по переработке отработавших твэлов. Потенциальные источники поступления цезия-137 в природную среду — сбросы из АЭС радиоактивных веществ в открытые пресноводные водоемы и хранилища радиоактивных отходов. Дозы облучения населения за счет выбросов предприятий топливно-ядерного цикла в условиях их нормальной эксплуатации незначительны и ниже рекомендованных нормативов.

Большая опасность загрязнения окружающей среды радиоактивным цезием возникает при авариях АЭС, когда значительно увеличиваются его выбросы. Дозы облучения при этом резко возрастают и колеблются в зависимости от масштабов аварии и эффективности мероприятий по ее ликвидации. Поступление цезия-137 в большой степени определяет радиационную опасность на протяжении длительного времени. Уровень загрязнения радиоактивным цезием окружающей среды зависит также от физико-географических и климатических особенностей районов, распределения атмосферных осадков и др. Например, в отдельных районах (украинско-белорусское Полесье, субарктические районы) уровни поступления цезия-137 с продуктами животного и растительного происхождения более высокие, чем в других. На Севере этому способствуют особенности роста лишайников (основной корм оленей), благоприятствующие задержке этого радионуклида и аккумуляции его в течение длительного времени.

Пищевые пути (цепи). Как и радиоактивный стронций, цезий-137 отличает высокая подвижность во внешней среде, особенно в первое время после его выпадения, а также по пищевым цепям, которые аналогичны миграции стронция-90. Еще одна возможная пищевая цепь миграции радионуклидов: источник загрязнения — лекарственные растения — лекарственное растительное сырье — лекарственный препарат — человек. Следует признать, что данная пищевая цепь миграции радионуклидов пока еще изучена недостаточно. В этом отношении представляют интерес данные исследования дикорастущего лекарственного растительного сырья в южных районах Калужской области, подвергнувшихся радиоактивному загрязнению. В результате оказалось, что плоды древесных пород на открытых местах обитания фактически не накапливают цезий-137. Наиболее низкие значения загрязнения почв для заготовки произрастающих на них лекарственных растений с безопасным содержанием цезия-137 выделены для многолетних кустарников и полукустарников, выросших на лугах (тимьян ползучий) и в лесу (брусника обыкновенная, багульник болотный).

Выпавший на поверхность почвы радиоактивный цезий мигрирует в горизонтальном и вертикальном направлениях, при этом важное значение приобретает его растворимость. В почве цезий-137 легко переходит в трудноусвояемую форму, образуя плохорастворимые соли. Поэтому его поступление в растения через корни происходит с трудом. Выпадение кислотных дождей облегчает переход цезия-137 в растворимую форму. На миграцию радионуклида в почве существенное влияние оказывают рельеф местности, гидрологический режим, вид почвы, характер растительности, проводимые агротехнические мероприятия и прочность связи радионуклида с почвой. По степени увеличения поглотительной способности цезия почвы можно расположить в ряд: черноземы — каштановые — дерново-подзолистые.

В растения радиоактивный цезий может поступать в результате непосредственного загрязнения листьев, стеблей, соцветий и плодов, а также усваиваться из почвы через корневую систему. Уровни поверхностного загрязнения растений зависят от их морфологических особенностей, плотности выпадений осадков, физико-химических свойств аэрозолей. По степени концентрирования цезия-137 растения могут быть расположены в следующий ряд: капуста — свекла — картофель — пшеница— естественное разнотравье. Уменьшение загрязненности пастбищной растительности (за счет дождя, ветра, прироста биомассы) происходит за период, равный примерно 14 сут. Более 90 % осевшего радионуклида удаляется в первые 2 мес. Растворимый цезий-137 поглощается корнями растений из почвенного раствора и прочно закрепляется в почве. По степени возрастания перехода цезия-137 в растения можно выстроить следующий ряд почв: дерново-подзолистые — красноземы — лу-гово-карбонатные — черноземы — сероземы. Больший переход радиоактивного цезия наблюдается в регионах с торфянисто-болотными почвами (украинско-белорусское Полесье). По степени накопления этого радионуклида в клубнях и зернах растения можно расположить в ряд: ячмень — просо — пшеница — гречиха — фасоль — овес —-чумиза — картофель — бобы. Величина накопления цезия-137 в растениях зависит от их вида, типа почвы и характера агротехнических мероприятий. При этом концентрация радиоактивного цезия в генеративных и вегетативных органах растений примерно одинакова.

Источниками цезия-137 для человека могут быть растительные (хлеб, овощи, фрукты) и животные (мясо, рыба, молоко и т. п.) продукты. Поскольку этот радионуклид имеет некоторые общие свойства с калием, то ткани растительного и животного происхождения накапливают и калий, и радиоактивный цезий. В организм животных цезий-137 в основном поступает с кормом, а выводится радионуклид преимущественно через почки. Основное количество его накапливается в мышцах (свыше 80 %), на втором месте находится скелет (около 10 %). Содержание радионуклида в 1 кг мышц коров, овец, коз, свиней и кур составляет соответственно 4, 8, 20, 26 и 45 % от суточного поступления. Радиоактивный цезий в значительных количествах выводится с молоком у лактирующих животных. При длительном поступлении радионуклида коровам содержание его в молоке достигает 0,8 — 1,2 % в 1 л от ежесуточного поступления, у коз — 10 — 20 %, у овец — 5 — 15 %. Эти различия связаны с физиологическими особенностями животных, характером корма и условиями их содержания.

Куриные яйца также являются источником поступления цезия-37 в организм человека, причем в белке радиоактивного цезия содержится в 2—3 раза больше, чем в желтке, а в скорлупе — 1—2 % от общего количества радионуклида в яйце.

Радиоактивный цезий в больших количествах накапливается в гидробионтах. Рыба усваивает цезий-137 непосредственно из воды и главным образом с кормом. Степень накопления этого радионуклида обусловлена биологическими и физиологическими особенностями каждого вида рыб. Слабая минерализация воды способствует более высокому накоплению цезия-137. В рыбе пресноводных водоемов радиоактивного цезия содержится в десятки — сотни раз больше, чем в морской. В то же время в промысловой рыбе Атлантического океана — в 10—30 раз ниже, чем в рыбе внутренних морей (например, Каспийского). Водные растения в зависимости от накопления цезия-137 могут быть расположены в следующий ряд: водоросли — растения, погруженные в воду,— прибрежно-водные растения — растения, плавающие на поверхности.

Радиоактивный цезий обладает достаточно высокой радиотоксичностью. В организм человека он может поступать через органы дыхания, кожные покровы, раны и ожоговые поверхности. Однако главный путь — с пищей. Радиоактивный цезий, подобно калию, равномерно распределяется в тканях и органах человека (что приводит к относительно равномерному их облучению), однако большая его часть концентрируется в мышечной ткани (80 % и лишь 10 % в костях). Цезий-137 относительно легко удаляется из организма. Выводится он преимущественно с мочой и частично — с калом. Период полувыведения этого радионуклида из организма — 65—100 сут. Скорость его выведения из организма обусловлена индивидуальными различиями людей в скорости обмена веществ и зависит от возраста, пола, характера питания, а также от многочисленных факторов внешней среды. Следует иметь в виду, что цезий-137 в значительных количествах переходит из организма матери через плаценту в плод (а в период вскармливания — с молоком к новорожденным).

В природном цезии не удалось обнаружить какие-либо иные изотопы, кроме стабильного 133 Cs. Известно 33 радиоактивных изотопа цезия с массовыми числами от 114 до 148. В большинстве случаев они недолговечны: периоды полураспада измеряются секундами и минутами, реже – несколькими часами или днями. Однако три из них распадаются не так быстро – это 134 Cs, 137 Cs и 135 Cs с периодами полураспада 2 года, 30 лет и 3·10 6 лет. Все три изотопа образуются при распаде урана, тория и плутония в атомных реакторах или в ходе испытаний ядерного оружия.

Степень окисления +1.

В 1846 в пегматитах о.Эльба в Тирренском море был открыт силикат цезия – поллуцит. При изучении этого минерала неизвестный в то время цезий был принят за калий. Содержания калия вычислялось по массе соединения платины, с помощью которого элемент переводили в нерастворимое состояние. Так как калий легче цезия, то подсчет результатов химического анализа показывал нехватку около 7%. Эта загадка была разрешена только после открытия спектрального метода анализа немецкими учеными Робертом Бунзеном и Густавом Кирхгоффом в 1859. Бунзен и Кирхгофф открыли цезий в 1861. Первоначально он был найден в минеральных водах целебных источников Шварцвальда. Цезий стал первым из элементов, открытых методом спектроскопии. Его название отражает цвет наиболее ярких линий в спектре (от латинского caesius – небесно-голубой).

Первооткрывателям цезия не удалось выделить этот элемент в свободном состоянии. Металлический цезий был впервые получен только через 20 лет, в 1882, шведским химиком К.Сеттербергом (Setterberg C.) при электролизе расплавленной смеси цианидов цезия и бария, взятых в отношении 4:1. Цианид бария добавлялся для снижения температуры плавления, однако работать с цианидами было трудно ввиду их высокой токсичности, а барий загрязнял конечный продукт, да и выход цезия был весьма мал. Более рациональный способ был найден в 1890 известным русским химиком Н.Н.Бекетовым , предложившим восстанавливать гидроксид цезия металлическим магнием в потоке водорода при повышенной температуре. Водород заполнял прибор и препятствовал окислению цезия, который отгонялся в специальный приемник, однако и в этом случае выход цезия не превышал 50% от теоретического.

Цезий в природе и его промышленное извлечение.

Цезий относится к редким элементам. Он встречается в рассеянном состоянии (порядка тысячных долей процента) во многих горных породах; ничтожные количества этого металла были обнаружены и в морской воде. В большей концентрации (до нескольких десятых процента) он содержится в некоторых калиевых и литиевых минералах, главным образом, в лепидолите. В отличие от рубидия и большинства других редких элементов, цезий образует собственные минералы – поллуцит, авогадрит и родицит.

Родицит крайне редок. Его часто относят к литиевым минералам, так как в его состав (М 2 O·2Al 2 O 3 ·3B 2 O 3 , где М 2 O – сумма оксидов щелочных металлов) лития обычно входит больше, чем цезия. Авогадрит (K,Cs) тоже редок. Больше всего цезия содержится в поллуците (Cs,Na)·n H 2 O (содержание Cs 2 O составляет 29,8–36,7% по массе).

Данные по мировым ресурсам цезия очень ограничены. Их оценки основаны на поллуците, добываемом в качестве побочного продукта вместе с другими пегматитовыми минералами.

По добыче поллуцита лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено 70% мировых запасов цезия (ок. 73 тыс. т). Поллуцит добывают также в Намибии и Зимбабве, ресурсы которых оценивают в 9 тыс. т и 23 тыс. т цезия, соответственно. В России месторождения поллуцита находятся на Кольском п-ове, в Восточных Саянах и Забайкалье. Имеются они также в Казахстане, Монголии и Италии (о. Эльба).

Чтобы вскрыть этот минерал и перевести ценные компоненты, в растворимую форму его обрабатывают при нагревании концентрированными минеральными кислотами. Если поллуцит разлагают соляной кислотой, то из полученного раствора действием SbCl 3 осаждают Cs 3 , который затем обрабатывают горячей водой или раствором аммиака. При разложении поллуцита серной кислотой получают алюмоцезиевые квасцы CsAl(SO 4) 2 ·12H 2 O.

Используют и другой способ: поллуцит спекают со смесью оксида и хлорида кальция, спек выщелачивают в автоклаве горячей водой, раствор выпаривают досуха с серной кислотой, а остаток обрабатывают горячей водой. После отделения сульфата кальция из раствора выделяют соединения цезия.

Современные методы извлечения цезия из поллуцита основаны на предварительном сплавлении концентратов с избытком извести и небольшим количеством плавикового шпата. Если процесс вести при 1200° C, то почти весь цезий возгоняется в виде оксида Cs 2 O. Этот возгон загрязнен примесью других щелочных металлов, однако он растворим в минеральных кислотах, что упрощает дальнейшие операции. Металлический цезий извлекают, нагревая до 900° С смеси (1:3) измельченный поллуцит с кальцием или алюминием.

Но, в основном, цезий получают как пробочный продукт при производстве лития из лепидолита. Лепидолит предварительно сплавляют (или спекают) при температуре около 1000° С с гипсом или сульфатом калия и карбонатом бария. В этих условиях все щелочные металлы превращаются в легкорастворимые соединения – их можно выщелачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция – отделение цезия от рубидия и громадного избытка калия.

Для разделения цезия, рубидия и калия и получения чистых соединений цезия применяют методы многократной кристаллизации квасцов и нитратов, осаждения и перекристаллизации Cs 3 или Cs 2 . Используют также хроматографию и экстракцию. Для получения соединений цезия высокой чистоты применяют полигалогениды.

Бóльшую часть производимого цезия выделяют в ходе получения лития, поэтому когда в 1950-х литий начали использовать в термоядерных устройствах и широко применять в автомобильных смазках, добыча лития, как и цезия возросла и соединения цезия стали доступнее, чем прежде.

Данные по мировому производству и потреблению цезия и его соединений не публикуются с конца 1980-х. Рынок цезия небольшой, и его ежегодное потребление оценивается всего лишь в несколько тысяч килограммов. В результате нет торговли и официальных рыночных цен.

Характеристика простого вещества, промышленное получение и применение металлического цезия.

Цезий – золотисто-желтый металл, один из трех интенсивно окрашенных металлов (наряду с медью и золотом). После ртути – это самый легкоплавкий металл. Плавится цезий при 28,44° С, кипит при 669,2° С. Его пары окрашены в зеленовато-синий цвет.

Легкоплавкость цезия сочетается с большой легкостью. Несмотря на довольно большую атомную массу элемента, его плотность при 20° С составляет всего 1,904 г/см 3 . Цезий много легче своих соседей по Периодической таблице. Лантан, например, имеющий почти такую же атомную массу, по плотности превосходит цезий в три с лишним раза. Цезий всего вдвое тяжелее натрия, в то время как их атомные массы относятся, как 6:1. По-видимому, причина этого кроется в электронной структуре атомов цезия (один электрон на последнем s -подуровне), приводящей к тому, что металлический радиус цезия очень велик (0,266 нм).

У цезия есть еще одно весьма важное свойство, связанное с его электронной структурой, – он теряет свой единственный валентный электрон легче, чем любой другой металл; для этого необходима очень незначительная энергия – всего 3,89 эВ, поэтому, например, получение плазмы из цезия требует гораздо меньших энергетических затрат, чем при использовании любого другого химического элемента.

По чувствительности к свету цезий превосходит все другие металлы. Цезиевый катод испускает поток электронов даже под действием инфракрасных лучей с длиной волны 0,80 мкм. Максимальная электронная эмиссия наступает у цезия при освещении зеленым светом, тогда как у других светочувствительных металлов этот максимум проявляется лишь при воздействии фиолетовых или ультрафиолетовых лучей.

Химически цезий очень активен. На воздухе он мгновенно окисляется с воспламенением, образуя надпероксид CsO 2 с примесью пероксида Cs 2 O 2 . Цезий способен поглощать малейшие следы кислорода в условиях глубокого вакуума. С водой он реагирует со взрывом с образованием гидроксида CsOH и выделением водорода. Цезий взаимодействует даже со льдом при –116° C. Его хранение требует большой осторожности.

Цезий взаимодействует и с углеродом . Только самая совершенная модификация углерода – алмаз – в состоянии противостоять цезию. Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит, внедряясь между атомами углерода и давая довольно прочные соединения золотисто-желтого цвета. При 200–500° С образуется соединение состава C 8 Cs 5 , а при более высоких температурах – C 24 Cs, C 36 Cs. Они воспламеняются на воздухе, вытесняют водород из воды, а при сильном нагревании разлагаются и отдают весь поглощенный цезий.

Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением, а с серой и фосфором – взрывом. При нагревании цезий соединяется с водородом. С азотом в обычных условиях цезий не взаимодействует. Нитрид Cs 3 N образуется в реакции с жидким азотом при электрическом разряде между электродами, изготовленными из цезия.

Цезий растворяется в жидком аммиаке , алкиламинах и полиэфирах, образуя синие растворы, обладающие электронной проводимостью. В аммиачном растворе цезий медленно реагирует с аммиаком с выделением водорода и образованием амида CsNH 2 .

Сплавы и интерметаллические соединения цезия сравнительно легкоплавки. Аурид цезия CsAu, в котором между атомами золота и цезия реализуется частично ионная связь, является полупроводником n -типа.

Наилучшее решение задачи получения металлического цезия было найдено в 1911 французским химиком А.Акспилем. По его методу, до сих пор остающемуся наиболее распространенным, хлорид цезия восстанавливают металлическим кальцием в вакууме:

2CsCl + Ca → CaCl 2 + 2Cs

при этом реакция идет практически до конца. Процесс ведут при давлении 0,1–10 Па и температуре 700–800° С. Выделяющийся цезий испаряется и отгоняется, а хлористый кальций полностью остается в реакторе, так как в этих условиях летучесть соли ничтожна (температура плавления CaCl 2 равна 773° С). В результате повторной дистилляции в вакууме получается абсолютно чистый металлический цезий.

Описаны и многие другие способы получения металлического цезия из его соединений. Металлический кальций можно заменить его карбидом, однако при этом температуру реакции приходится повышать до 800° С, поэтому конечный продукт загрязняется дополнительными примесями. Проводят также электролиз расплава галогенида цезия с использованием жидкого свинцового катода. В результате получают сплав цезия со свинцом, из которого металлический цезий выделяют дистилляцией в вакууме.

Можно разлагать азид цезия или восстанавливать цирконием его дихромат, однако эти реакции иногда сопровождаются взрывом. При замене дихромата цезия хроматом процесс восстановления протекает спокойно, и хотя выход не превышает 50%, отгоняется очень чистый металлический цезий. Этот способ применим для получения небольших количеств металла в специальном вакуумном приборе.

Мировое производство цезия сравнительно невелико.

Металлический цезий – компонент материала катодов для фотоэлементов, фотоэлектронных умножителей, телевизионных передающих электронно-лучевых трубок. Фотоэлементы со сложным серебряно-цезиевым фотокатодом особенно ценны для радиолокации: они чувствительны не только к видимому свету, но и к невидимым инфракрасным лучам и, в отличие, например, от селеновых, работают безинерционно. В телевидении и кино широко распространены сурьмяно-цезиевые фотоэлементы; их чувствительность даже после 250 часов работы падает всего на 5–6%, они надежно работают в интервале температур от –30° С до +90° С. Из них составляют так называемые многокаскадные фотоэлементы; в этом случае под действием электронов, вызванных лучами света в одном из катодов, наступает вторичная эмиссия – электроны испускаются добавочными фотокатодами прибора. В результате общий электрический ток, возникающий в фотоэлементе, многократно усиливается. Усиление тока и повышение чувствительности достигаются также при заполнении цезиевых фотоэлементов инертным газом (аргоном или неоном).

Металлический цезий служит для изготовления специальных выпрямителей, во многих отношениях превосходящих ртутные. Его используют в качестве теплоносителя в ядерных реакторах, компонента смазочных материалов для космической техники, геттера в вакуумных электронных приборах. Металлический цезий проявляет и каталитическую активность в реакциях органических соединений.

Цезий используется в атомных стандартах времени. «Цезиевые часы» необыкновенно точны. Их действие основано на переходах между двумя состоянием атома цезия с параллельной и антипараллельной ориентацией собственных магнитных моментов ядра атома и валентного электрона. Этот переход сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). В 1967 Международная генеральная конференция по мерам и весам установила: «Секунда – время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133».

В последнее время большое внимание уделяется цезиевой плазме, всестороннему изучению ее свойств и условий образования, возможно, она станет использоваться в плазменных двигателях будущего. Кроме того, работы по исследованию цезиевой плазмы тесно связаны с проблемой управляемого термоядерного синтеза. Многие считают, что целесообразно создавать цезиевую плазму, используя тепловую энергию атомных реакторов.

Хранят цезий в стеклянных ампулах в атмосфере аргона или стальных герметичных сосудах под слоем обезвоженного вазелинового масла. Утилизируют остатки металла обработкой пентанолом.

Соединения цезия.

Цезий образует бинарные соединения с большинством неметаллов. Гидриды и дейтериды цезия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием. Галогениды и соли большинства кислот более стабильны.

Соединения с кислородом . Цезий образует девять соединений с кислородом, имеющих состав от Cs 7 O до CsO 3 .

Оксид цезия Cs 2 O образует коричнево-красные кристаллы, расплывающиеся на воздухе. Его получают медленным окислением недостаточным (2/3 от стехиометрического) количеством кислорода. Остаток непрореагировавшего цезия отгоняют в вакууме при 180–200° С. Оксид цезия в вакууме при 350–450° С возгоняется, а при 500° С разлагается:

2Cs 2 O = Cs 2 O 2 + 2Cs

Энергично реагирует с водой, давая гидроксид цезия.

Оксид цезия является компонентом сложных фотокатодов, специальных стекол и катализаторов. Установлено, что при получении синтола (синтетической нефти) из водяного газа и стирола из этилбензола, а также при некоторых других синтезах добавление к катализатору незначительного количества оксида цезия (вместо оксида калия) повышает выход конечного продукта и улучшает условия процесса.

Гигроскопичные бледно-желтые кристаллы пероксида цезия Cs 2 O 2 можно получить окислением цезия (или его раствора в жидком аммиаке) дозированным количеством кислорода. Выше 650° С пероксид цезия разлагается с выделением атомарного кислорода и энергично окисляет никель, серебро, платину и золото. Пероксид цезия растворяется в ледяной воде без разложения, а выше 25° С реагирует с ней:

2Cs 2 O 2 + 2H 2 O = 4CsOH + O 2

В кислотах он растворяется с образованием пероксида водорода.

При сжигании цезия на воздухе или в кислороде образуется золотисто-коричневый надпероксид цезия CsO 2 . Выше 350° С он диссоциирует с выделением кислорода. Надпероксид цезия – очень сильный окислитель.

Пероксид и надпероксид цезия служат источниками кислорода и используются для его регенерации в космических и подводных кораблях.

Полуторный оксид «Cs 2 О 3 » образуется в виде темного парамагнитного порошка при осторожном термическом разложении надпероксида цезия. Его можно также получить окислением металла, растворенного в жидком аммиаке, или контролируемым окислением пероксида. Предполагается, что он является динадпероксидом-пероксидом [(Cs +)4(O 2 2–)(O 2 –) 2 ].

Оранжево-красный озонид CsО 3 можно получить при действии озона на безводный порошок гидроксида или пероксида цезия при низкой температуре. При стоянии озонид медленно разлагается на кислород и надпероксид, а при гидролизе он сразу превращается в гидроксид.

Цезий образует также субоксиды, в которых формальная степень окисления элемента существенно ниже +1. Оксид состава Cs 7 O имеет бронзовую окраску, его температура плавления равна 4,3° С, активно реагирует с кислородом и водой. В последнем случае образуется гидроксид цезия. При медленном нагревании Cs 7 O разлагается на Cs 3 O и цезий. Фиолетовые кристаллы Cs 11 O 3 плавятся с разложением при 52,5° С. Красно-фиолетовый Cs 4 O разлагается выше 10,5° С. Нестехиометрическая фаза Cs 2+x O меняет состав вплоть до Cs 3 O, который разлагается при 166° С.

Гидроксид цезия CsOH образует бесцветные кристаллы, которые плавятся при ° С. Температуры плавления гидратов еще ниже, например моногидрат CsOH·H 2 O плавится с разложением при 2,5° С, а тригидрат CsOH·3H 2 O – даже –5,5° С.

Гидроксид цезия служит катализатором синтеза муравьиной кислоты. С этим катализатором реакция идет при 300° С без высокого давления. Выход конечного продукта очень велик – 91,5%.

Галогениды цезия CsF, CsCl, CsBr, CsI (бесцветные кристаллы) плавятся без разложения, выше температуры плавления летучи. Термическая устойчивость понижается при переходе от фторида к иодиду; бромид и иодид в парах частично разлагаются на простые вещества. Галогениды цезия хорошо растворимы в воде. В 100 г воды при 25° С растворяется 530 г фторида цезия, 191,8 г хлорида цезия, 123,5 г бромида цезия, 85,6 г иодида цезия. Из водных растворов кристаллизуются безводные хлорид, бромид и иодид. Фторид цезия выделяется в виде кристаллогидратов состава CsF·n H 2 O, где n = 1, 1,5, 3.

При взаимодействии с галогенидами многих элементов галогениды цезия легко образуют комплексные соединения. Некоторые из них, например Cs 3 , используют для выделения и аналитического определения цезия.

Фторид цезия применяют для получения фторорганических соединений, пьезоэлектрической керамики, специальных стекол. Хлорид цезия – электролит в топливных элементах, флюс при сварке молибдена.

Бромид и иодид цезия широко используются в оптике и электротехнике. Кристаллы этих соединений прозрачны для инфракрасных лучей с длиной волны от 15 до 30 мкм (CsBr) и от 24 до 54 мкм (CsI). Обычные призмы из хлорида натрия пропускают лучи с длиной волны 14 мкм, а из хлорида калия – 25 мкм, поэтому применение бромида и иодида цезия вместо хлоридов натрия и калия сделало возможным снятие спектров сложных молекул в отдаленной инфракрасной области.

Если при изготовлении флуоресцирующих экранов для телевизоров и научной аппаратуры ввести между кристалликами сульфида цинка примерно 20% иодида цезия, экраны будут лучше поглощать рентгеновские лучи и ярче светиться при облучении электронным пучком.

Сцинтилляционные приборы для регистрации тяжелых заряженных частиц, содержащие монокристаллы иодида цезия, активированного таллием, обладают наибольшей чувствительностью из всех приборов подобного назначения.

Цезий-137.

Изотоп 137 Cs образуется во всех атомных реакторах (в среднем 6 ядер 137 Cs из 100 ядер урана).

При нормальных условиях эксплуатации АЭС выбросы радионуклидов, в том числе радиоактивного цезия, незначительны. Подавляющее количество продуктов ядерного деления остается в топливе. По данным дозиметрического контроля, концентрация цезия в районах расположения АЭС почти не превышает концентрацию этого нуклида в контрольных районах.

Сложные ситуации возникают после аварий, когда во внешнюю среду поступает огромное количество радионуклидов и загрязнению подвергаются большие территории. Поступление цезия-137 в атмосферу было отмечено при аварии на Южном Урале в 1957 г., где произошел тепловой взрыв хранилища радиоактивных отходов, при пожаре на радиохимическом заводе в Уинденейле в Великобритании в 1957, при ветровом выносе радионуклидов из поймы оз. Карачай на Южном Урале в 1967. Катастрофой стала авария на Чернобыльской атомной электростанции в 1986, на долю цезия-137 пришлось около 15% общего радиационного заражения. Основной источник поступления радиоактивного цезия в организм человека – загрязненные нуклидом продукты питания животного происхождения.

Радионуклид 137 Cs можно использовать и с пользой для человека. Он применяется в дефектоскопии, а также в медицине для диагностики и лечения. Цезием-137 заинтересовались специалисты в области рентгенотерапии. Этот изотоп разлагается сравнительно медленно, теряя за год только 2,4% своей исходной активности. Он оказался пригодным для лечения злокачественных опухолей. Цезий-137 имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада и менее жесткое g -излучение. В связи с этим приборы на основе 137 Cs долговечнее, а защита от излучения менее громоздка. Однако, эти преимущества становятся реальными лишь при отсутствии примеси 134 Cs с более коротким периодом полураспада и более жестким g -излучением.

Из растворов, полученных при переработке радиоактивных отходов ядерных реакторов, 137 Cs извлекается методами соосаждения с гексацианоферратами железа , никеля , цинка или фторовольфраматом аммония. Используют также ионный обмен и экстракцию.

Елена Савинкина

2024 incobonus.ru. Личность. Психология. Дом и быт. Компьютер. Психология.